Jumat, 09 September 2011


Radiasi dan Dunia yang Kita Huni


Apa yang dimaksud dengan radiasi?

Radiasi dapat diartikan sebagai energi yang dipancarkan dalam bentuk partikel atau gelombang. Pengertian tentang radiasi dan gelombang dapat dijelaskan pada kejadian berikut.
Apa yang Anda lakukan jika Anda melihat kolam air tenang yang pada permukaannya mengapung beberapa helai daun? Secara spontan mungkin Anda akan melempar kerikil ke kolam tersebut. Dapat Anda lihat bahwa pada lokasi jatuhnya kerikil akan muncul riak, yang kemudian akan menyebar dalam bentuk lingkaran. Riak-riak tersebut adalah gelombang dan memperlihatkan pergerakan energi yang diberikan oleh kerikil, dan energi tersebut menyebar dari lokasi jatuhnya kerikil ke segala arah. Ketika riak mencapai daun, daun tersebut akan terangkat naik ke puncak gelombang.


Berdasarkan kejadian tersebut dapat dilihat bahwa untuk mengangkat sesuatu diperlukan energi. Karena itu, terangkatnya daun memperlihatkan bahwa gelombang mempunyai energi, dan energi tersebut telah bergerak dari lokasi jatuhnya kerikil ke lokasi terangkatnya daun. Hal yang sama juga berlaku untuk berbagai jenis gelombang dan radiasi lain.

Salah satu karakteristik dari semua radiasi adalah radiasi mempunyai panjang gelombang, yaitu jarak dari suatu puncak gelombang ke puncak gelombang berikutnya.



 
Radiasi terdiri dari beberapa jenis, dan setiap jenis radiasi tersebut memiliki panjang gelombang masing-masing.
Ditinjau dari massanya, radiasi dapat dibagi menjadi radiasi elektromagnetik dan radiasi partikel. Radiasi elektromagnetik adalah radiasi yang tidak memiliki massa. Radiasi ini terdiri dari gelombang radio, gelombang mikro, inframerah, cahaya tampak, sinar-X, sinar gamma dan sinar kosmik. Radiasi partikel adalah radiasi berupa partikel yang memiliki massa, misalnya partikel beta, alfa dan neutron.

Jika ditinjau dari "muatan listrik"nya, radiasi dapat dibagi menjadi radiasi pengion dan radiasi non-pengion. Radiasi pengion adalah radiasi yang apabila menumbuk atau menabrak sesuatu, akan muncul partikel bermuatan listrik yang disebut ion. Peristiwa terjadinya ion ini disebut ionisasi.

Ion ini kemudian akan menimbulkan efek atau pengaruh pada bahan, termasuk benda hidup. Radiasi pengion disebut juga radiasi atom atau radiasi nuklir. Termasuk ke dalam radiasi pengion adalah sinar-X, sinar gamma, sinar kosmik, serta partikel beta, alfa dan neutron. Partikel beta, alfa dan neutron dapat menimbulkan ionisasi secara langsung. Meskipun tidak memiliki massa dan muatan listrik, sinar-X, sinar gamma dan sinar kosmik juga termasuk ke dalam radiasi pengion karena dapat menimbulkan ionisasi secara tidak langsung. Radiasi non-pengion adalah radiasi yang tidak dapat menimbulkan ionisasi. Termasuk ke dalam radiasi non-pengion adalah gelombang radio, gelombang mikro, inframerah, cahaya tampak dan ultraviolet.


Tulisan ini hanya akan membicarakan radiasi pengion, khususnya sinar-X dan sinar gamma. Kedua jenis radiasi ini mempunyai potensi bahaya yang lebih besar dibandingkan dengan jenis radiasi lainnya. Pengaruh sinar kosmik hampir dapat diabaikan karena sebelum mencapai tubuh manusia, radiasi ini telah berinteraksi terlebih dahulu dengan atmosfir bumi. Radiasi beta hanya dapat menembus kertas tipis, dan tidak dapat menembus tubuh manusia, sehingga pengaruhnya dapat diabaikan. Demikian pula dengan radiasi alfa, yang hanya dapat menembus beberapa milimeter udara. Sedang radiasi neutron pada umumnya hanya terdapat di reaktor nuklir.


Bagaimana kita mengetahui adanya radiasi?

Radiasi tidak dapat dilihat, didengar, dicium, dirasakan atau diraba. Indera manusia tidak dapat mendeteksi radiasi sehingga seseorang tidak dapat mengetahui kapan ia dalam bahaya atau tidak. Radiasi hanya dapat diketahui dengan menggunakan alat, yang disebut monitor radiasi. Monitor radiasi terdiri dari detektor radiasi dan rangkaian elektronik penunjang. Pada umumnya, monitor radiasi dilengkapi dengan alarm yang akan mengeluarkan bunyi jika ditemukan radiasi. Bunyi alarm semakin keras apabila tingkat radiasi yang ditemukan semakin tinggi. Monitor radiasi umumnya digunakan hanya untuk mengetahui ada atau tidaknya radiasi.

Monitor radiasi yang digunakan untuk mengukur jumlah radiasi atau dosis yang diterima oleh seseorang disebut dosimeter perorangan dan monitor radiasi yang digunakan untuk mengukur kecepatan radiasi atau laju dosis di suatu area dikenal dengan survaimeter. Alat-alat tersebut dapat disamakan dengan indikator jarak dan speedometer pada mobil. Indikator jarak menunjukkan berapa km atau mil yang telah dijalani oleh mobil, seperti halnya dosimeter perorangan menunjukkan berapa dosis radiasi yang telah diterima oleh seseorang. Speedometer menunjukkan pada kita beberapa km atau mil kecepatan mobil perjam, seperti survaimeter menunjukkan berapa laju dosis radiasi.

Salah satu cara untuk mengukur dosis radiasi pada dosimeter perorangan adalah berdasarkan pada tingkat kehitaman film jika terkena radiasi. Dengan memproses film dan mengukur tingkat kehitamannya, dosis radiasi yang diterima oleh seseorang dapat diperkirakan.

Cara lain untuk mengukur dosis adalah berdasarkan pada jumlah cahaya yang dihasilkan pada bahan tertentu akibat oleh radiasi setelah dilakukan proses pemanasan. Dosimeter perorangan ini disebut TLD (Thermo Luminescence Dosimeter). TLD lebih peka dan akurat daripada dosimeter film dan dapat digunakan kembali setelah dilakukan proses pembacaan dosis.

Berbeda dengan dosimeter perorangan yang memberikan informasi dosis radiasi yang telah diterima, survaimeter memberikan informasi laju dosis radiasi pada suatu area pada suatu saat. Hasil perkalian antara laju dosis yang ditunjukkan survaimeter dan lama waktu selama berada di area merupakan perkiraan jumlah radiasi atau dosis yang diterima bila berada di suatu area selama waktu tersebut. Dengan survaimeter ini seseorang dapat menjaga diri agar tidak terkena radiasi yang melebihi batas yang diizinkan. 

Apakah radiasi aman?

Perlu kita sadari, bahwa tidak ada satupun aktivitas manusia yang benar-benar aman dan bebas dari risiko. Bahkan, ketika duduk santai di kursi sekalipun, kita menghadapi risiko terjungkal dari kursi. Dalam setiap tindakan yang kita lakukan selalu ada risiko, betapapun kecilnya risiko tersebut. Kadangkala, tanpa disadari, kita mengabaikan risiko tersebut. Sebagai contoh, ketika hendak menyeberang jalan sewaktu lalulintas tidak padat, kita hanya menunggu adanya jeda antar kendaraan untuk menyeberang. Dalam hal ini, tanpa sadar kita mengabaikan risiko tertabrak oleh kendaraan.

Setiap tindakan yang kita ambil mungkin relatif lebih aman, atau sebaliknya, relatif lebih berbahaya dari tindakan alternatif lainnya.  Sebagai contoh, untuk mendeteksi suatu penyakit apakah kanker atau bukan, kita dapat menggunakan sinar-X. Penggunaan sinar-X itu sendiri mengandung risiko, namun jika kanker dibiarkan tak terdeteksi, hal tersebut dapat berakibat fatal. Dalam hal ini, risiko penggunaan sinar-X untuk mendeteksi kanker jauh lebih kecil daripada risiko membiarkan kanker tak terdeteksi. Hal ini seringkali disebut sebagai pertimbangan manfaat-risiko.

Karena itu, kita tidak dapat mengatakan bahwa radiasi aman, atau sebaliknya, radiasi berbahaya. Yang bisa kita lakukan adalah mengambil risiko yang sekecil-kecilnya untuk mendapatkan keuntungan yang sebesar-besarnya. Tidak ada salahnya kita menggunakan  radiasi, jika manfaat yang akan kita dapat jauh lebih besar daripada risikonya.

Apakah radiasi bermanfaat?

Radiasi pengion banyak menjanjikan manfaat bagi umat manusia, walaupun demikian kita harus waspada terhadap risikonya. Sebagai contoh, matahari  memancarkan segala jenis radiasi, termasuk radiasi inframerah (panas), radiasi cahaya tampak dan radiasi ultraviolet. Radiasi-radiasi tersebut merupakan bagian dari kehidupan sehari-hari, dan kita tidak dapat hidup tanpa radiasi-radiasi tersebut. Namun, kita juga harus menyadari bahwa setiap radiasi alamiah dapat berakibat buruk. Terlalu banyak inframerah dapat menyebabkan benda terbakar. Terlalu banyak cahaya tampak dapat menyebabkan kebutaan, dan terlalu banyak ultraviolet dapat mengakibatkan kanker kulit atau kulit terbakar.

Masyarakat awam sering mendengar atau mengalami pemeriksaan kesehatan menggunakan sinar-X. Sinar-X digunakan dalam bidang kedokteran untuk menggambarkan rangka tubuh manusia dan struktur tubuh bagian dalam, mendeteksi benda-benda asing dalam tubuh, tulang patah, serta beberapa penyakit, misalnya tuberkolosis (TBC) dan pembengkakan jantung.

Namun, bila tidak digunakan secara hati-hati, sinar-X dapat meningkatkan risiko kanker dan bahkan dapat mengakibatkan kematian pasien. Akan tetapi, sifat-sifat radiasi pengion dan cara untuk meminimalkan jumlah dosis yang diterima dari penyinaran radiasi sinar-X telah dipahami. Karena itu, tak ada lagi alasan untuk takut terhadap penyinaran sinar-X, sepanjang digunakan secara tepat. Kita dapat meminimalkan pemakaian yang tidak tepat melalui pendidikan, pelatihan dan penegakan hukum atau aturan dan ketentuan yang berlaku. Semua radiasi pengion dapat digunakan secara luas untuk keperluan yang bermanfaat dengan tingkat keamanan yang tinggi.

Pemanfaatan Radiasi Nuklir dan Radioisotop Dalam Kehidupan Manusia

Beberapa bahan yang ada di alam, seperti uranium, apabila direaksikan dengan neutron, akan mengalami reaksi pembelahan dan menghasilkan energi yang dapat digunakan untuk memanaskan air hingga menjadi uap. Selanjutnya uap tersebut dapat digunakan untuk memutar turbin dan menghasilkan listrik. Pembangkit Listrik Tenaga Nuklir komersial yang pertama adalah Reaktor Magnox, yang dibangun pada tahun 1950-an di Inggris.

Sedangkan penggunaan radioisotop secara sengaja untuk suatu tujuan tertentu dilakukan oleh George du Hevesy pada tahun 1911. Pada saat itu, ia masih berstatus seorang pelajar yang sedang meneliti bahan radioaktif alam. Karena berasal dari luar kota dan dari keluarga yang sederhana ia tinggal di suatu asrama yang sekaligus menyajikan makanan pokok sehari-hari. Pada suatu ketika, ia curiga bahwa makanan yang disajikan dicampur dengan makanan sisa dari hari sebelumnya, tetapi ia tidak bisa membuktikan kecurigaannya itu. Untuk itu ia menaruh sejumlah kecil bahan radioaktif kedalam makanan yang sengaja tidak dihabiskannya. Keesokan harinya ketika makanan yang jenisnya sama disajikan, ia melakukan pemeriksaan makanan tersebut dengan menggunakan peralatan deteksi radiasi yang sederhana, dan ternyata ia mendeteksi adanya radioisotop dalam makanan yang dicurigainya. Mulai saat itulah ia mengembangkan penggunaan bahan radioaktif sebagai suatu perunut (tracer) untuk berbagai macam keperluan.

Bidang Energi: Pembangkit Listrik Tenaga Nuklir

Perbedaan antara Pembangkit Listrik Tenaga Nuklir dan Pembangkit Listrik Berbahan Bakar Fosil

Semua pembangkit tenaga listrik, termasuk PLTN, mempunyai prinsip kerja yang relatif sama. Bahan bakar (baik yang berupa batu bara, gas ataupun uranium) digunakan untuk memanaskan air yang akan menjadi uap. Uap memutar turbin dan selanjutnya turbin memutar suatu generator yang akan menghasilkan listrik.

Peranan PLTN dalam Kelistrikan Dunia

Pada Nopember 2005, di seluruh dunia terdapat 441 buah pembangkit listrik tenaga nuklir yang beroperasi di 31 negara, menghasilkan tenaga listrik sebesar lebih dari 363 trilyun watt. Reaktor yang dalam tahap pembangunan sebanyak 30 buah dan 24 negara (termasuk 6 negara yang belum pernah mengoperasikan reaktor nuklir) merencanakan untuk membangun 104 reaktor nuklir baru. Saat ini energi listrik yang dihasilkan PLTN menyumbang 16% dari seluruh kelistrikan dunia, yang secara kuantitatif jumlahnya lebih besar dari listrik yang dihasilkan di seluruh dunia pada tahun 1960.


Negara-negara di Eropa merupakan negara yang paling tinggi persentase ketergantungannya pada energi nuklir. Perancis, Lithuania dan Slovakia merupakan tiga negara yang memiliki ketergantungan listrik pada energi nuklir yang tinggi, yaitu masing-masing sebesar 78%, 72% dan 55%.




Bidang Non Energi: Pemanfaatan Radiasi Untuk Kesejahteraan Manusia

 

Bidang Pertanian

Efisiensi Pemupukan

Pupuk harganya relatif mahal dan apabila digunakan secara berlebihan akan merusak lingkungan, sedangkan apabila kurang dari jumlah seharusnya hasilnya tidak efektif. Untuk itu perlu diteliti jumlah pupuk yang diserap oleh tanaman dan berapa yang dibuang ke lingkungan. Penelitian ini dilakukan dengan cara memberi “label” pupuk yang digunakan dengan suatu isotop, seperti nitrogen-15 atau phosphor-32. Pupuk tersebut kemudian diberikan pada tanaman dan setelah periode waktu dilakukan pendeteksian radiasi pada tanaman tersebut.

Penelitian Tanaman Varietas Baru

Seperti diketahui, radiasi pengion mempunyai kemampuan untuk merubah sel keturunan suatu mahluk hidup, termasuk tanaman. Dengan berdasar pada prinsip tersebut, maka para peneliti dapat menghasilkan jenis tanaman yang berbeda dari tanaman yang telah ada sebelumnya dan sampai saat ini telah dihasilkan 1800 jenis tanaman baru.
Varietas baru tanaman padi, gandum, bawang, pisang, cabe dan biji-bijian yang dihasilkan melalui teknik radioisotop mempunyai ketahanan yang lebih tinggi terhadap hama dan lebih mampu beradaptasi terhadap perubahan iklim yang ekstrim.

Pengendalian Hama Serangga

Di seluruh dunia, hilangnya hasil panen akibat serangan hama serangga kurang lebih 25-35%. Untuk memberantas hama serangga sejak lama para petani menggunakan insektisida kimia. Akhir-akhir ini insektisida kimia dirasakan menurun keefektifannya, karena munculnya serangga yang kebal terhadap insekstisida. Selain itu insektisida juga mulai dikurangi penggunaannya karena insektisida meninggalkan residu yang beracun pada tanaman. Salah satu metode yang mulai banyak digunakan untuk menggantikan insektisida dalam mengendalikan hama adalah teknik serangga mandul. 

Teknik serangga mandul dilakukan dengan mengiradiasi serangga menggunakan radiasi gamma untuk memandulkannya. Serangga jantan mandul tersebut kemudian dilepas dalam jumlah besar pada daerah yang diserang hama. Apabila mereka kawin dengan serangga betina, maka tidak akan dihasilkan keturunan. Dengan melepaskan serangga jantan mandul secara berulang, populasi hama serangga akan turun secara menyolok. Teknik ini telah digunakan secara intensif di banyak negara penghasil pertanian seperti Amerika Selatan, Mexico, Jamaika dan Libya.

Pengawetan Makanan

Kerusakan makanan hasil panen dalam penyimpanan akibat serangga, pertunasan dini atau busuk, dapat mencapai 25-30%. Kerugian ini terutama diderita oleh negara-negara yang mempunyai cuaca yang panas dan lembab. Pengawetan makanan banyak digunakan dengan tujuan untuk menunda pertunasan pada umbi-umbian, membunuh serangga pada biji-bijian, pengawetan hasil laut dan hasil peternakan, serta rempah-rempah.

Pada teknik pengawetan dengan menggunakan radiasi, makanan dipapari dengan radiasi gamma berintensitas tinggi yang dapat membunuh organisme berbahaya, tetapi tanpa mempengaruhi nilai nutrisi makanan tersebut dan tidak meninggalkan residu serta tidak membuat makanan menjadi radioaktif. Teknik iradiasi juga dapat digunakan untuk sterilisasi kemasan. Di banyak negara kemasan karton untuk susu disterilkan dengan iradiasi.